MATH4230 Optimization Theory (2017/18)
Tutorial 3

Please do the star problem (x) in tutorial class and finish the rest after class. Please hand
in your answer sheet to the assignment box in Lady Shaw Building before 6:30 p.m.

1*. Let X be a nonempty convex subset of 1", let f : X — R" be a concave function,
and let X* be the set of vectors where f attains a minimum over X, i.e.,

X* = {z* € X|f(2") = infrexf(z)}.

Show that if there exist xy € X*, 2o € ri(X), then f = C on X, where C' is a
constant.

Solution 1. Let x* € X*(\7i(X), and let x be any vector in X. By the Prolongation
Lemma, there exists a v > 0 s.t.

T=x"+vy(@" —z) e X.

Hence,

. I Y
T = x + xT.
v+1 v+1

By the concavity of f, we have
. Lo gl
fla*) 2 ﬁf(x) +mf(x),
and using f(Z) > f(z*), f(x) > f(z*), this shows that f(x) = f(z*). O

2*. Let C' be a nonempty convex set. Show that

(a) c(C) = cl(ri(C)).
(b) ri(C) = ri(cl(C)).
(c) Let C be another nonempty convex set. Then the following three conditions

are equivalent:

(i) C and C have the same relative interior.
(ii) € and C have the same closure.
(iii) ri(C) c C C d(0).
Solution 2. (a) Since ri(C) C C, we have cl(ri(C)) C cl(C). Conversely, let
& € c(C). We will show that & € cl(ri(C)). Let x € ri(C) be any point(the existence

is ensured by Noemptiness of Relative Interior), and assume I # x (otherwise we
are done). By the Line Segment Principle, we have

azr + (1 —a)z € ri(C),Ya € (0,1].

Thus, T is the limit of the sequence
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that lies in ri(C), so & € cl(ri(C)).

(b) The inclusion ri(C) C ri(cl(C)) follows from the definition of a relative interior
point and the fact af f(C) = af f(cl(C)) (the proof of this is left for the reader). To
prove the reverse inclusion, let z € ri(cl(C)). We will show that z € ri(C). There
exists an x € ri(C). We may assume that x # z (Otherwise we are done). We use
the Prolongation Lemma to choose v > 0, with v sufficiently close to 0 so that the
vector

y=z+v(z—x)€dC).
Then we have
z=(1—-a)z+ay
where a = %H € (0,1), so by the Line Segment Principle (applied within the set

C), we obtain z € ri(C).

(e) We prove this equivalence argument by the following steps:

i — i : part (a).

it — i : part (b).

1,10 — 111 obviously.

i1 — i1 Supppose the condition iii holds. Then by taking closures, we have cl(ri(C)) C

(C) C c(C), and by using part (a), we obtain cl(C) C cl(C) C cl(C). Hence

c(C) = c(C). O

. Let X be a nonempty set. Show that:

(a) X, conv(X), and ¢l(X) have the same affine hull.
(b) cone(X) = cone(conv(X)).

(c) aff(conv(X)) Caff(cone(X)). Give an example where the inclusion is strict,
i.e., aff(conv(X)) is a strict subset of aff(cone(X)).

(d) If the origin belongs to conv(X), then aff(conv(X)) =aff(cone(X)).

Solution 3.



(a) We first show that X and cl(X) have the same affine hull. Since X C cl(X),
there holds

aff(X) C aff (cI(X)).
Conversely, because X C aff(X) and aff(X) is closed, we have cl(X) C aff(X),
implying that

aff (cl(X)) C aff(X).

We now show that X and conv(X) have the same affine hull. By using a
translation argument if necessary, we assume without loss of generality that X
contains the origin, so that both aff(X) and aff (conv(X )) are subspaces. Since
X C conv(X), evidently aff(X) C aff (conv(X )) To show the reverse inclusion,
let the dimension of aff (conv(X )) be m, and let z4,.. ., T, be linearly indepen-

dent vectors in conv(X) that span aff (conv(X )) Then every = € aff (conv (X )) is
a linear combination of the vectors x1,...,x,,, i.e., there exist scalars 5,,..., G

such that
T = Z Bix;.

i=1
By the definition of convex hull, each z; is a convex combination of vectors in

X, so that z is a linear combination of vectors in X, implying that a € aff(X).
Hence, aff(conv(X)) C aff(X).

(b) Since X C conv(X), clearly cone(X) C cone(conv(X )) Conversely, let

T € cone (conv(X )) Then x is a nonnegative combination of some vectors in
conv(X), ie., for some positive integer p, vectors xi,...,z, € conv(X), and
nonnegative scalars a1, ..., ap, we have

p
I = E ;Tq.
i=1

Each z; is a convex combination of some vectors in X, so that x is a nonneg-
ative combination of some vectors in X, implying that & € cone(X). Hence
cone(conv(X)) C cone(X).

(c) Since conv(X) is the set of all convex combinations of vectors in X, and
cone(X) is the set of all nonnegative combinations of vectors in X, it follows that
conv(X) C cone(X). Therefore

aff(conv(X)) C aff (cone(X)).

As an example showing that the above inclusion can be strict, consider the
set X = {(1, 1)} in R%. Then conv(X) = X, so that

aH(conv(X)) =X = {(1,1)},

and the dimension of conv(X) is zero. On the other hand, cone(X) = {(a, a) |
a > U}, so that
aff(cone(X)) = {(:z:l,arg) | 2y = ;;-:2},



and the dimension of cone(X) is one.

(d) In view of parts (a) and (c), it suffices to show that
aff (cone(X)) - aﬂ"(conv(X)) = aff(X).

It is always true that 0 € cone(X), so aff(cone(X)) is a subspace. Let the
dimension of aff (cone(X )) be m, and let z1,...,zm be linearly independent

vectors in cone(X ) that span aff (cone(X )) Since every vector in aff (cone(X )) is
a linear combination of 1, . . ., zm, and since each x; is a nonnegative combination
of some vectors in X, it follows that every vector in aff (cone(X )) is a linear
combination of some vectors in X. In view of the assumption that 0 € conv(X),
the affine hull of conv(X) is a subspace, which implies by part (a) that the affine
hull of X is a subspace. Hence, every vector in aff(cone(X)) belongs to aff(X),

showing that aff (cone(X)) C aff(X).



